CONTROLLING INFLAMMATION

Developing the First in Class Anti-C5a Antibody IFX-1: Lessons Learned from Clinical Trials

Niels C. Riedemann
Important Notice and Disclaimer

THIS PRESENTATION HAS BEEN PREPARED BY INFLARX N.V. (“INFLARX”), A US-NASDAQ PUBLICLY LISTED DUTCH COMPANY HAVING ITS PRINCIPLE PLACE OF BUSINESS IN GERMANY. THIS PRESENTATION IS MADE FOR INFORMATIONAL PURPOSES ONLY AND DOES NOT CONSTITUTE AN OFFER TO SELL OR A SOLICITATION OF AN OFFER TO BUY SECURITIES. THE INFORMATION SET FORTH HEREIN DOES NOT PURPORT TO BE COMPLETE OR TO CONTAIN ALL OF THE INFORMATION YOU MAY DESIRE. STATEMENTS CONTAINED HEREIN ARE MADE AS OF THE DATE OF THIS PRESENTATION UNLESS STATED OTHERWISE, AND NEITHER THE DELIVERY OF THIS PRESENTATION AT ANY TIME, NOR ANY SALE OF SECURITIES, SHALL UNDERTAKE ANY CIRCUMSTANCES CREATE AN IMPLICATION THAT THE INFORMATION CONTAINED HEREIN IS CORRECT AS OF ANY TIME AFTER SUCH DATE OR THAT INFORMATION WILL BE UPDATED OR REVISED TO REFLECT INFORMATION THAT SUBSEQUENTLY BECOMES AVAILABLE OR CHANGES OCCURRING AFTER THE DATE HEREOF.

THIS PRESENTATION MAY CONTAIN FORWARD-LOOKING STATEMENTS. FORWARD-LOOKING STATEMENTS ARE NEITHER HISTORICAL FACTS NOR ASSURANCES OF FUTURE PERFORMANCE. INSTEAD, THEY ARE BASED ON OUR CURRENT BELIEFS, EXPECTATIONS AND ASSUMPTIONS REGARDING THE FUTURE OF OUR BUSINESS, FUTURE PLANS AND STRATEGIES, OUR CLINICAL RESULTS AND OTHER FUTURE CONDITIONS. ALL STATEMENTS OTHER THAN STATEMENTS OF HISTORICAL FACTS CONTAINED IN THIS PRESENTATION, INCLUDING STATEMENTS REGARDING FUTURE RESULTS OF OPERATIONS AND FINANCIAL POSITION, BUSINESS STRATEGY, CURRENT AND PROSPECTIVE PRODUCT CANDIDATES, PLANNED CLINICAL TRIALS AND PRECLINICAL ACTIVITIES, PRODUCT APPROVALS, RESEARCH AND DEVELOPMENT COSTS, CURRENT AND PROSPECTIVE COLLABORATIONS, TIMING AND LIKELIHOOD OF SUCCESS, EXPECTATIONS REGARDING MARKET ACCEPTANCE AND SIZE, PLANS AND OBJECTIVES OF MANAGEMENT FOR FUTURE OPERATIONS, AND FUTURE RESULTS OF ANTICIPATED PRODUCT CANDIDATES, ARE FORWARD-LOOKING STATEMENTS. THESE RISKS AND UNCERTAINTIES INCLUDE THOSE DESCRIBED UNDER THE CAPTION “RISK FACTORS” IN INFLARX’S REGISTRATION STATEMENT ON FORM F-1 AND THE ACCOMPANYING PROSPECTUS FILED WITH THE SECURITIES AND EXCHANGE COMMISSION IN CONNECTION WITH THE COMPANY’S INITIAL PUBLIC OFFERING AND OTHER FILINGS WITH THE SECURITIES AND EXCHANGE COMMISSION. NEW RISKS AND UNCERTAINTIES MAY EMERGE FROM TIME TO TIME, AND IT IS NOT POSSIBLE TO PREDICT ALL RISKS AND UNCERTAINTIES. EXCEPT AS REQUIRED BY APPLICABLE LAW, WE DO NOT PLAN TO PUBLICLY UPDATE OR REVISE ANY FORWARD-LOOKING STATEMENTS CONTAINED HEREIN, WHETHER AS A RESULT OF ANY NEW INFORMATION, FUTURE EVENTS, CHANGED CIRCUMSTANCES OR OTHERWISE. ALTHOUGH WE BELIEVE THE EXPECTATIONS REFLECTED IN SUCH FORWARD-LOOKING STATEMENTS ARE REASONABLE, WE CAN GIVE NO ASSURANCE THAT SUCH EXPECTATIONS WILL PROVE TO BE CORRECT. ACCORDINGLY, READERS ARE CAUTIONED NOT TO PLACE UNDUE RELIANCE ON THESE FORWARD-LOOKING STATEMENTS. NO REPRESENTATIONS OR WARRANTIES (EXPRESSED OR IMPLIED) ARE MADE ABOUT THE ACCURACY OF ANY SUCH FORWARD-LOOKING STATEMENTS.

CERTAIN INFORMATION CONTAINED IN THIS PRESENTATION RELATES TO OR IS BASED ON STUDIES, PUBLICATIONS, SURVEYS AND OTHER DATA OBTAINED FROM THIRD-PARTY SOURCES AND INFLARX’S OWN INTERNAL ESTIMATES AND RESEARCH. WHILE INFLARX BELIEVES THESE THIRD-PARTY SOURCES TO BE RELIABLE AS OF THE DATE OF THIS PRESENTATION, IT HAS NOT INDEPENDENTLY VERIFIED, AND MAKES NO REPRESENTATION AS TO THE ADEQUACY, FAIRNESS, ACCURACY OR COMPLETENESS OF, ANY INFORMATION OBTAINED FROM THIRD-PARTY SOURCES. IN ADDITION, ALL OF THE MARKET DATA INCLUDED IN THIS PRESENTATION INVOLVES A NUMBER OF ASSUMPTIONS AND LIMITATIONS, AND THERE CAN BE NO GUARANTEE AS TO THE ACCURACY OR RELIABILITY OF SUCH ASSUMPTIONS. FINALLY, WHILE WE BELIEVE OUR OWN INTERNAL RESEARCH IS RELIABLE, SUCH RESEARCH HAS NOT BEEN VERIFIED BY ANY INDEPENDENT SOURCE.
The anti-inflammatory and tissue saving potential of IFX-1

Discussing the potential IFX-1 holds for various inflammatory disease indications
The Complement Pathways

The extrinsic pathway represents an additional route, outside of the well-known complement pathways, to activate C5.
The Terminal Complement Pathway

C5

C5 concentration in blood: ~75 µg/ml (~400 nM)

C5a concentration in blood: 10 ~ 30 ng/ml (~1-2.5 nM)

C5a

- strong amplifier of inflammation
- other ligands: C3a, ASP, C4a etc

C5aR

- cell activation
- cytokine generation

C5L2

- PKC-signalling
- HMGB-1 induction* (Inflammasome)

CSL2

- other signalling involved e.g. in triglyceride synthesis etc.

Membrane Attack Complex (MAC) triggers lysis of pathogens

C5b-9 = MAC

- C5L2 has a different binding pocket for C5a compared to other ligands like C3a, ASP etc. and this causes different cell signaling**. The C5a signaling has been shown to be pro-inflammatory*.

Inflammation

C5 concentration in blood: ~75 µg/ml (~400 nM)

C5a concentration in blood: 10 ~ 30 ng/ml (~1-2.5 nM)

C5a

- strong amplifier of inflammation
- other ligands: C3a, ASP, C4a etc

C5aR

- cell activation
- cytokine generation

C5L2

- PKC-signalling
- HMGB-1 induction* (Inflammasome)

CSL2

- other signalling involved e.g. in triglyceride synthesis etc.

Membrane Attack Complex (MAC) triggers lysis of pathogens

C5b-9 = MAC

- C5L2 has a different binding pocket for C5a compared to other ligands like C3a, ASP etc. and this causes different cell signaling**. The C5a signaling has been shown to be pro-inflammatory*.

Inflammation

* Rittirsch et al. Nat Med. 2008 May ; 14(5): 551; Colley et al. MABS. 2018,10 (1), 104
** Kalant D. et. al. J. Biol. Chem. 2003, 278 (13) 11123–11129
Songlin et. al. J. Biol. Chem. 2019; 294(21) 8384–839
The InflaRx anti-C5a Technology

C5

C5a

C5b

C5b-9 = MAC

MAC lysis
invading microorganisms

C5a conformational change

new epitope

IFX-1

KEY FEATURES

✓ Blocks C5a biological effects up to 100% in human blood
✓ Leaves MAC formation intact
✓ Binds with high affinity to the discovered epitope

Cleavage of C5 through:
• Complement pathway activation, or
• Directly through enzymes via “extrinsic” pathway
The C5a Blocking Potential of IFX-1 in Plasma of Patients suffering from Hidradenitis Suppurativa

5 nM IFX-1 highly effectively blocks HS-plasma / C5a-induced neutrophil activation in human blood

Data source: InflaRx GmbH in-house data
IFX-1 Specificity in Vitro and In Vivo

IFX-1 impact on Hemolytic Activity (CH50)*

IFX-1 impact on CH50 Analysis in Septic Patients**

IFX-1 does not influence the hemolytic activity and leaves C5 cleavage and formation of C5b-9 (MAC) intact.

** Data: InflaRx – Sepsis Clinical Trial Phase IIa
Neutrophil Activation Potential of C5a

Data Source: Prof. Peter Ward, University of Michigan

C5a Mode of Action on Neutrophils:
- chemotaxis of neutrophils (Shin et al 1968, *Science* 162,361-3)
- enzyme release (Goldstein et al 1974, *J. Immunol.* 113, 1583-8)
Potential of IFX-1 to Prevent Tissue Damage in H7N9 Induced Lung Inflammation

- IFX-1 treatment markedly improved the lung injury score in H7N9 infected lungs
- IFX-1 treatment strongly decreased viral load in H7N9 infected lungs

Sun et al., Clin Infect Diseases, 2014, Sept.
The tissue damaging effect of C5a
C5a as Key Player in Inflammation

Strong Amplifier
- Numerous publications
- Well understood MoA

Neutrophils & Monocytes
- Chemotaxis & Activation
- Adhesion
- O2 Radicals
- Enzyme release

Macrophages
- ROS production
- Release of granular enzymes

Endothelials/vascular
- Upregulation of C5aR
- ANGIogenesis
- Increased vascular permeability
- Adhesion molecules
- Coagulation, e.g. TF

Blood
- Coagulation increasing tissue factor

proinflam. Cytokines
- TNF-α, IL-1β, IL-6, IL-17
- Chemokines, e.g. IL-8
- HMGB-1
- others

T-cells
- Promote Th1/Th17
- Inhibition of Treg

Epithelial cells
- Upregulation of C5aR
- Tissue inflammation

> 5000 publications since the 1970th
Summary IFX anti-C5a Technology:

➢ Strong IP on discovered conformational epitope on C5a with protection until late in 2030 and with potential extension until late in 2035

➢ IFX-1 shows a superior performance:
 • up to 100% biological blocking activity towards its target C5a in a 1:1 ratio
 • leaves MAC formation intact – is highly selective

➢ IFX-1 has shown its anti-inflammatory potential in various settings

➢ IFX-1 and IFX-2 are based on the IFRX technology and are believed to be multi-applicable in various disease indications
Hearing clinical trials results and examining lessons learned
Hidradenitis Suppurativa

CLINICAL FEATURES
- Chronic, inflammatory, recurrent, debilitating skin disease of the hair follicles
- Most commonly in the armpit, groin and genital regions
- Extremely painful inflammatory nodules, boils or abscesses
- Draining fistulas leading to considerable scarring and functional disability
- Hurley staging system used to classify severity (stage I – III)

PREVALENCE
- Up to 200,000 moderate to severe (Hurley II+III) HS patients in US
- Higher prevalence in Europe with reports > 1% total HS prevalence

CURRENT TREATMENT – MEDICAL NEED
- Adalimumab (TNF-alpha inhibitor) from AbbVie is the only approved biological in US and Europe
- Accepted (but not approved) SOC includes topical, oral or i.v. antibiotics
- In some instances, surgery is required
- Approximately 50 - 55% of patients with moderate to severe HS do not respond or lose response to Humira

1 combined phase III trial data for Humira: response measured by HiSCR 50 and KOL quotes in LifeSci Capital initiation report 112/2018
The HiSCR as Endpoint Used for Approval in HS

HiSCR – A VALIDATED ENDPOINT

• Humira was approved based on HiSCR response – providing a potential pathway to approval

• HiSCR defines 3 types of lesions:
 – Abscesses
 – Inflammatory nodules
 – Draining fistulas

• HiSCR response defined as:
 – At least 50% reduction in total abscess and inflammatory nodule count (AN count)
 – No increase in the number of abscesses from baseline
 – No increase in the number of draining fistulas from baseline
IFX-1 Open Label Phase IIa Study in Hidradenitis Suppurativa

OBJECTIVE
• Assessing safety and efficacy of IFX-1 in HS
• Primary endpoint: safety
• Secondary endpoint: HiSCR response at different time points,

DESIGN
• Open label
• Single-center
• 12 patients

PATIENT CHARACTERISTICS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>8</td>
</tr>
<tr>
<td>(66.7%)</td>
<td></td>
</tr>
<tr>
<td>Age [y]</td>
<td>48 ± 15</td>
</tr>
<tr>
<td>50 (22; 69)</td>
<td></td>
</tr>
<tr>
<td>Hurley Stage III</td>
<td>12</td>
</tr>
<tr>
<td>(100%)</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>27.3 ± 4.9</td>
</tr>
<tr>
<td>26.6 (19.6; 34.5)</td>
<td></td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>82.2 ± 14.7</td>
</tr>
<tr>
<td>78.0 (63.0; 105.0)</td>
<td></td>
</tr>
<tr>
<td>Duration of HS [y]</td>
<td>20 ± 9</td>
</tr>
<tr>
<td>20 (3; 35)</td>
<td></td>
</tr>
<tr>
<td>AN count</td>
<td>6.4 ± 2.5</td>
</tr>
<tr>
<td>6 (3; 11)</td>
<td></td>
</tr>
<tr>
<td>Failure to TNF-alpha blockade</td>
<td>9/12</td>
</tr>
</tbody>
</table>

TREATMENTS
• 1 dose group
• Weekly i.v. 800 mg until week 8 (plus one additional loading dose on day 4)
IFX-1 Open Label Phase IIa Study in Hidradenitis Suppurativa: HiSCR Response

- 83% HiSCR response rate in a severe patient population – with long effect duration
- Strong effect on draining fistula reduction detected (not captured with the HiSCR) – data not shown
Efficacy of IFX-1: Skin Response Example, Phase IIa Trial in HS

IFX-1 demonstrated a long lasting effect on the inflammatory lesions after only 8 weeks of 800mg qw dosing
IFX-1 in HD: SHINE Study Details

Main Period
- Placebo
- IFX-1 minimal dose (400mg q4w)
- IFX-1 low dose (800mg q4w)
- IFX-1 medium dose (800mg q2w)
- IFX-1 high dose (1200mg q2w)

Open Label Extension Period (OLE)
- Week 16 HiSCR Responders:
 - IFX-1 low dose (800mg q4w)
- Week 16 HiSCR Non-Responders:
 - IFX-1 medium dose (800mg q2w)

Screening
16 weeks (double blind)

TOTAL TREATMENT TIME: 9 months + 1 month observation

MAIN GOALS
- Test a dose dependent effect of IFX-1 on HiSCR responds at week 16 (primary endpoint)
- Assess long term safety of IFX-1
- Test durability of response with lower maintenance therapy in open label extension period

Important Note: Patients entering the OLE were not unblinded to their initial therapy
SHINE Study Patient Disposition for Open Label Extension (OLE)

SNAPSHOT ANALYSIS END OF SEP. 2019
- End of Treatment (EOT) - week 40: Sept. 6th 2019 (completed at snapshot: n = 116)
- Last patient last visit (week 44): Oct. 4th 2019
- Final Data will be available early 2020

MAIN PERIOD
- week 16
- OLE Period
- week 40 + 4

Patients Enrolled
n = 179

Patients Dosed
n = 177 (100%)

Entered Extension
n = 156 (88%)

Completed OLE
n = 122 (69%)
- visit at EOT at wk 40
 n = 116
- completed wk 44
 n = 122

Discontinued
n = 34 (19%)
SHINE STUDY: Primary Outcome HiSCR at Week 16 versus AN Count Reduction

HiSCR response rate (%) week 16*

- Placebo: 47.1
- Minimum: 40.0
- Low: 51.5
- Medium: 38.7
- High: 45.5

* Full analysis set

AN Count Score change (mean %) week 16*

- Placebo: -26.5
- Minimum: -32.7
- Low: -54.6
- Medium: -44.9
- High: -47.7

n = approx. 35/ group

Primary Endpoint: HiSCR dose response signal not met but signal towards improved AN count
SHINE STUDY: Outcome on Draining Fistula and IHS-4 Score Reduction – week 16

Stat. significant change in DF and in IHS-4 scores detected

* Full analysis set ** Full analysis set – baseline adjusted
IHS-4 Score: Includes and Weights All Inflammatory Lesions

Developed by KOL’s / Physicians to establish a new severity scoring system, suitable for tracking treatment response

- Captures reduction of draining fistulas (unlike HiSCR)
- Weights the most fluctuating lesions (infl. nodules) less than abscesses or fistula – lower variability
- Internal validation work shows correlation with DLQI and Pain Scores in SHINE data set

IHS-4 points = sum of

<table>
<thead>
<tr>
<th>Lesion Type</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of inflammatory nodules</td>
<td>x 1</td>
</tr>
<tr>
<td>number of abscesses</td>
<td>x 2</td>
</tr>
<tr>
<td>number of draining fistulas</td>
<td>x 4</td>
</tr>
</tbody>
</table>

HS STAGE

- **Mild:** ≤ 3 points
- **Moderate:** 4-10 points
- **Severe:** ≥ 11 points
Comparison of HiSCR for Week 16 Responder versus Non-responder Groups (OLE) Over Time

Responders: 71% maintain HiSCR response with low dose IFX-1
Non-responders: 42% become HiSCR responders with medium dose IFX-1

* full analysis set
Inflammatory Lesion Reductions in all OLE Patients at End of Treatment (week 40) Compared to Placebo Group Performance in Main Period

Relative Reduction (% mean) of Counts / Scores compared to Respective Baseline (Day1)*

of all OLE patients on week 40 (n=116)

Marked improvement of all inflammatory lesions over time – not explainable by placebo effect

* full analysis set (unadjusted)
IHS-4 Scores Over Time in OLE: Non-responders versus Responders

Change in IHS-4 scores between week 16 and week 40 in week 16 HiSCR responders versus non-responders*

- **Non-Responders**
 - (n = 84)

- **Responders**
 - (n = 72)

Non-responders improve under medium dose IFX-1 treatment during OLE

Responders are relatively “stable” with their IHS-4 scores on low dose IFX-1

* full analysis set
IHS-4 Scores in OLE Patients: Relative Change from Baseline (Day 1)
HiSCR Non-responder Group (week 16)

IHS-4 scores: Relative change from baseline (mean) in OLE patients at week 16 and week 40 in **HiSCR non-responder patients** (week 16) – displayed per Main Period Treatment group*

Main period placebo and minimal dose patients show strongest improvement in IHS-4 scores when being treated with medium IFX-1 dose (for week 16 HiSCR Non-Responders)

*Last observation carried forward analysis set
IHS-4 Scores in OLE Patients: Relative Change from Baseline (Day 1) HiSCR Responder Group (week 16)

IHS-4 Scores relative change to baseline (mean) in OLE patients at week 16 and week 40 in week 16 HiSCR responders - displayed per Main Period Treatment group*

Treatment Group in Main period:
- placebo
- 400 mg q4w
- 800 mg q4w
- 800 mg q2w
- 1200 mg q2w

Main period HiSCR responders maintain or slightly lose their IHS-4 score improvements when treated with the low dose IFX-1

* Last observation carried forward analysis set
Results indicate that IFX-1 consumption in HS is much higher than in other diseases (trough levels are a multiple lower at same dose)

Results further indicate that this consumption in HS is likely driven by a very high C5a turnover rate

Models suggest a target mediated drug clearance: this means, the higher the generation rate of C5a the higher the IFX-1 clearance

Models suggest that IFX-1 achieves a good tissue penetration rate, especially for higher dose groups
Key Takeaways of SHINE Study:

- HiSCR is burdened by high variability (driven by AN count variability) and by a lack of capturing reduction of draining fistula.

- Evidence for a very high C5a turnover rate in HS, leading to IFX-1 consumption.

- IFX-1 leads to a market reduction of all inflammatory lesions in this disease with a durable long term effect detected even at non-optimal doses.

- IFX-1 long term treatment was well tolerated, no drug related SAE’s in the open label extension phase.
Thank you for your attention

InflaRx N.V.
Winzerlaer Str. 2
07745 Jena, Germany
Email: info@inflarx.com
Tel: +49-3641-508180
Fax: +49-3641-508181
www.inflarx.com